300 research outputs found

    Even free access is still beyond the means of most scholars in Africa

    Get PDF
    Published online: 26 April 200

    Surface state engineering of molecule-molecule interactions

    Get PDF
    Engineering the electronic structure of organics through interface manipulation, particularly the interface dipole and the barriers to charge carrier injection, is of essential importance to improved organic devices. This requires the meticulous fabrication of desired organic structures by precisely controlling the interactions between molecules. The well-known principles of organic coordination chemistry cannot be applied without proper consideration of extra molecular hybridization, charge transer and dipole formation at the interfaces. Here we identify the interplay between energy level alignment, charge transfer, surface dipole and charge pillow effect and show how these effects collectively determine the net force between adsorbed porphyrin 2H-TPP on Cu(111). We show that the forces between supported porphyrins can be altered by controlling the amount of charge transferred across the interface accurately through the relative alignment of molecular electronic levels with respect to the Shockley surface state of the metal substrate, and hence govern the self-assembly of the molecules

    The double [3+2] photocycloaddition reaction

    Get PDF
    One of a synthetic organic chemists‟ greatest challenges is to create step-efficient routes toward compounds with high molecular complexity. Therefore, reactions such as the meta photocycloaddition of an olefin to a benzene derivative, which provide more than one bond in a single step are of significant importance. It this remarkable reaction three new σ bonds, three new rings and up to six new stereocenters are formed simultaneously. Additional complexity can be added by tethering the two reacting partners together and this form of the reaction has found many uses in natural product synthesis. In this work a remarkable double [3+2] photocycloaddition reaction is reported that results in the formation of a complex cis, cis, cis, trans-[5, 5, 5, 5] fenestrane derivative from a simple flat aromatic acetal with two branching alkenes. During this dramatic transformation four carboncarbon bonds, five new rings and seven new stereocenters are created in a single one-pot process using only UV light. The reaction occurs in a sequential manner from the linear meta photocycloadduct, via a secondary [3+2] addition of the alkene across the cyclopropane of the adduct. In addition, an angular meta photocycloadduct also produced in the initial addition step, undergoes an alternative fragmentation-translocation photoreaction to afford a silphinene-like angular tricyclic compound. In this work the investigation of this newly discovered process is discussed via the synthesis and subsequent irradiation of a series of photosubstrates containing different functional groups in the arene-alkene tether. In addition, attempts toward the synthesis of alternative structures using the same double [3+2] photocycloaddition are reported

    Fluorescent Protein-Based Methods for On-Plate Screening of Gene Insertion

    Get PDF
    Unlike the commonly used method of blue-white screening for gene insertion, a fluorescent protein-based screening method offers a gain-of-function screening process without using any co-factors and a gene fusion product with a fluorescent protein reporter that is further useful in cell imaging studies. However, complications related to protein-folding efficiencies of the gene insert in fusion with fluorescent protein reporters prevent effective on-plate bacterial colony selection leading to its limited use.Here, we present three methods to tackle this problem. Our first method promotes the folding of the gene insert by using an N-terminal protein such as calmodulin that is well folded and expressed. Under this method, fluorescence was increased more than 30x over control allowing for enhanced screening. Our second method creates a fluorescent protein that is N-terminal to the gene upon insertion, thereby reducing the dependency of the fluorescent protein reporter on the folding of the gene insert. Our third method eliminates any dependence of the fluorescent protein reporter on the folding of the gene insert by using a stop and start sequence for protein translation.The three methods together will expand the usefulness of fluorescence on-plate screening and offer a powerful alternative to blue-white screening

    Immunohistochemical assessment of protein phosphorylation state: the dream and the reality

    Get PDF
    The development of phosphorylation state-specific antibodies (PSSAs) in the 1980s, and their subsequent proliferation promised to enable in situ analysis of the activation states of complex intracellular signaling networks. The extent to which this promise has been fulfilled is the topic of this review. I review some applications of PSSAs primarily in the assessment of solid tumor signaling pathway activation status. PSSAs have received considerable attention for their potential to reveal cell type-specific activation status, provide added prognostic information, aid in the prediction of response to therapy, and most recently, demonstrate the efficacy of kinase-targeted chemotherapies. However, despite some successes, many studies have failed to demonstrate added value of PSSAs over general antibody immunohistochemistry. Moreover, there is still a large degree of uncertainty about the interpretation of complex and heterogeneous staining patterns in tissue samples and their relationship to the actual phosphorylation states in vivo. The next phase of translational research in applications of PSSAs will entail the hard work of antibody validation, gathering of detailed information about epitope-specific lability, and implementation of methods for standardization

    Analysis of the anti-tumor effect of cetuximab using protein kinetics and mouse xenograft models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The binding of EGFR and its ligands leads to autophosphorylation of receptor tyrosine kinase as well as subsequent activation of signal transduction pathways that are involved in regulating cellular proliferation, differentiation, and survival. An EGFR inhibitor, cetuximab binds to EGFR and consequently blocks a variety of cellular processes. <it>KRAS</it>/<it>BRAF </it>mutations are known to be associated with a low response rate to cetuximab. In the present study, to clarify the anti-tumor mechanisms of cetuximab, we evaluated the <it>KRAS</it>/<it>BRAF </it>status, phosphorylation level of the EGFR pathway, and the tumor suppression effect in vivo, using a human colon cancer cell line HT29, which exhibited the highest EGFR expression in response to the cetuximab therapy among the 6 colorectal cancer cell lines tested.</p> <p>Findings</p> <p>The conventional growth suppression assay did not work efficiently with cetuximab. EGF, TGF-α, and IGF activated the EGFR/MAPK cell signaling pathway by initiating the phosphorylation of EGFR. Cetuximab partially inhibited the EGFR/MAPK pathway induced by EGF, TGF-α, and IGF. However, cetuximab exposure induced the EGFR, MEK, and ERK1/2 phosphorylation by itself. Mouse xenograft tumor growth was significantly inhibited by cetuximab and both cetuximab-treated and -untreated xenograft specimens exhibited phosphorylations of the EGFR pathway proteins.</p> <p>Conclusions</p> <p>We have confirmed that cetuximab inhibited the EGFR/MAPK pathway and reduced tumor growth in the xenografts while the remaining tumor showed EGFR pathway activation. These results suggest that: ( i ) The effect of cetuximab in growth signaling is not sufficient to induce complete growth suppression in vitro; ( ii ) time-course monitoring may be necessary to evaluate the effect of cetuximab because EGFR signaling is transmitted in a minute order; and ( iii ) cetuximab treatment may have cells acquired resistant selectively survived in the heterogeneous cancer population.</p

    Insight on genes affecting tuber development in potato upon <i>Potato spindle tuber viroid</i> (PSTVd) infection

    Get PDF
    Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, and can replicate in the nucleus and move systemically throughout the plant. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. Our primary focus in this study is the identification of genes which can affect tuber formation since viroid infection can strongly influence tuber development and especially tuber shape. In this study, we used a large-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathway related genes showed significant up- or down-regulation. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 transcripts were identified and validated showing differential expression in viroid infected tissues. Our study suggests that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection
    corecore